/v

AARHUS UNIVERSITET

Microservices and DevOps

DevOps and Container Technology
Security 101 - Authorization

Henrik Baerbak Christensen

/v

AARHUS UNIVERSITET

Authorization

 Authenticate actor /K

Detect Attacks ~ Resist Attacks ~ React to Recover
l " Attacks from Attacks
_ O k M Identify
y yO U are ag n u S Detect Actors Revoke) Mtain Restore

; Access . ;
Intrusion i
Attack Authenticate Audit Trail l

= ————» Detect Service Actors Lock
« Authorize actor

Verify Message _
Integll'ity 98 Actors Inform Availability

— ... and you have access to e NG
S kyC ave Encrypt Data

Separate
Entities

System Detects,
e e >
Resists, Reacts,

or Recovers

Change Default
Settings

Figure 9.3. Security tactics

CS@AU Henrik Beerbak Christensen 2

Y Our Backyard

AARHUS UNIVERSITET

* You register credentials
In the course subscription ‘.
Se rViCe - e s

Password Repeat Password
‘Authenticate’
uthenticate e et

MSDO SkyCave Subscription 2021

 The daemon asks it during

> Task :client:cmd

Cave Iogln Star with Cpf File = cpf/http.cpf

Trying to og in player with loginName: mathilde_aarskort

‘ H ’
- AUthOFIZG == Welc 0 5 D :r Mathilde ==
Enterin mand op, "q" to quit, "h" for help.

CS@AU Henrik Baerbak Christensen 3

Y Architecturally

AARHUS UNIVERSITET

« Then our daemon service must talk to the subscription
service to authorize ‘Mathilde’

« Simple, right?
— Let Cmd send (loginName, password) to Daemon...

— Deamon sends the (loginName, password) to AuthSrv and get a
200 OK or a 401 UNAUTHORIZED back?

CS@AU Henrik Baerbak Christensen 4

eV MSDO until 2021

AARHUS UNIVERSITET
* This is actually exactly the way the SkyCave system
operated up until 2021

You can verify your subscription using the SubscriptionService's RESTish interface by a GET request on a URL ala

http://cavereg.baerbak. com:7654/api/v2/auth?loginName=831728&password=Tisk

Ask for the resource
owner’s credentials

 The daemon would make a
GET request on SRR
the subscription service... - - & -
oo

> | e

= T
Client Protected
Resource

Figure 1.4 Ask for the resource ownet's credentials, and replay them

CS@AU Henrik Baerbak Christensen

eV The Issue

AARHUS UNIVERSITET

« The problem is: Now Daemon has your credentials. It can
Impersonate you in other contexts.

* In a growing web of services, it means your credentials
are spread over an ever increasing set of services...
— This does not really appear secure, does it?

« And you have to keep track of credentials for numerous

services
— Each having their own database of credentials

+ ®

eV The Solution

AARHUS UNIVERSITET

« Delegate the authorization to a AuthServer

— l.e. you provide credentials to the AuthSrv, not the resource you
want to access

 The AuthSvr issues an AccessToken that is returned to
the client (if you are authorized, of course)
— Basically a unique ‘thing’ that states ‘you may use the resource’

* From now on, all communication client-to-resource
Includes that token

« The resource can always verify that the token is valid by
requesting the AuthSvr

 And — it expires...

- Example

AARHUS UNIVERSITET
7 Bitbucket

Log in to continue to:

Bitbucket G Logind med Google

Enter email

Logind

Ga videre til Atlassian

Continue [Mailadresse eller telefonnummer ——————

Har du glemt mailadressen?

3 Continue with Google

Hvis du fortseetter, deler Google dit navn, din mailadresse,
dine sprogpraeferencer og dit profilbillede med Atlassian.

B” Continue with Microsoft

& Continue with Apple

s Continue with Slack
Dansk ~ Hj=lp Privatliv Vilkar

Can't login? = Signup For an account

CS@AU Henrik Baerbak Christensen 8

/v (Privacy)

AARHUS UNIVERSITET

* As a sidenote, privacy is quite another quality attributes

— If you use Google as AuthSrv, then Google knows exactly which
services you access and when...

/v

AARHUS UNIVERSITET

Authentication

The OAuth 2 Dance
It Is a protocol !
And itis a HTTP protocal...

/v Terminology

AARHUS UNIVERSITET
« The terms takes a bit of getting-used-to...

e Resource Owner

— That is me
 Protected Resource The authorization

— Thatis my bank account iy mzsi?;ris?:rios ;Er;ic?ge Authonzation

. the gap between)
d C“ent the client and the
]] protected resource.

— That is the bank’s web site D
 Authorization Server —

— That is NemID or ... - Resource

Figure 1.7 The OAuth authorization server automates the service-specific password process

CS@AU Henrik Baerbak Christensen 11

\ 4
AARHUS UNIVERSITET

* | need access to my BitBucket account
 Who is who here?

The authorization

R server gives us a

esource

Oumer mechanism to bridge
the gap between
the client and the

m protected resource.

Client

Figure 1.7 The OAuth authorization server automates the service-specific password process

CS@AU

Authorization
Server
| S—

Protected
Resource

¥ Bitbucket

Log in to continue to:
Bitbucket

Enter email

& continue with Google
[|] " " -
m Continue with Microsoft
& Continue with Apple

i Continue with Slack

Can'tlogin? « Sign up for an account

Henrik Baerbak Christensen

Exercise

@

Log ind med Google

Logind

Ga videre til Atlassian

|» Mailadresse eller telefonnummer

Har du glemt mailadressen?

Hvis du fortseetter, deler Google dit navn, din mailadresse,
dine sprogpraeferencer og dit profilbillede med Atlassian.

Dansk = Hj=lp Privatliv Vilkar

12

- Helicopter Perspective
AARHUS UNIVERSITET
= B 8 8

e Qverall...

Client Authorization
Owner Client requests Server Ilesuun:e
authorization

| I . |
Resource owner
grants authorization

1 The Resource Owner indicates to the Client that they would like the Client to
act on their behalf (for example, “Go load my photos from that service so I can

print them”).
2 The Clllent. requests authorization from the Resource Owner at the N —
Authorization Server.
Client sends

The Resource Owner grants authorization to the Client. A 3
authorization grant

The Client receives a Token from the Authorization Server.
5 The Client presents the Token to the Protected Resource.

Authorization server
sends access token

Client sends
access token

Protected resource
sends resource

Figure 1.8 The OAuth process, at a high level

CS@AU Henrik Beerbak Christensen 13

/v

AARHUS UNIVERSITET
« And the detalils...

 Note the redirects...

— OAuth is a protocol relying
on the web and HTTP

CS@AU Henrik Beerbak

—— [
CEE N
P
@)
Resource Client Authorization || Authorization Protected
Owner " " Serven: Server: Token Resource
Client redirects
user agent to M:":m‘:" endpoint
authorization endpoint pe
* - OEE . e
User agent loads
authorization
endpoint
>
Resource owner
authenticates to
authorization server
- >
Resource owner
authorizes client
=
Authorization server redirects
user agent to client with
authorization code
- - - L_N L | - LI
User agent loads
redirect URI at
client with
authorization code
.
Client sends authorization
code and its own 4
credentials to token endpoint ’
=
Authorization server sends
access token to client @
Client sends access token
to protected resource

=

Protected resource returns
resource to client

>

Figure 2.1 The authorization code grant in detail

L

/v

AARHUS UNIVERSITET

The Detalls

/v

AARHUS UNIVERSITET

« The OAuth Dance

— Press ‘login’
make a redirect
as answer

— Forcing my browser
to ...

In the code:
9000 is the client

9001 is the AuthSvr
9002 is Protected Resource

CS@AU

Authorization Grant

HTTP/1.1 302 Moved Temporarily

x-powered-by: Express

Location: http://localhost:9001/authorize?response type=code&scope=foo&client
_id=cauth-client-l&redirect_uri=http%3A%2F%2Flocalhost%3A%000%2Fcallbacksa
state=Lwt50DDQEUB8U7jtfLQCVGDLY cnmwHH1

Vary: Accept

Content-Type: text/html; charset=utf-8

Content-Length: 444

Date: Fri, 31 Jul 2015 20:50:19 GMT

Connection: keep-alive

e

"m“’“ Client redirects the Authorization
ner . Server

resource owner to the

authorization server’s

authorization endpoint
Client Protected
Resource

Figure 2.2 Sending the resource owner to the authorization server to
start the process

Henrik Baerbak Christensen 16

eV Redirect

AARHUS UNIVERSITET

... load the login page
— Follow the requested redirect to the AuthServer

CET fauthorize?response type-code&scope=foo&client id=cauth-client
-liredirect _uri=http%3A%2F%2Flocalhost%3A9000%
2Fcallback&state=Lwt50DDQEUESU7jtfLOCVGDL9cnmwHHL HTTP/1.1

Host: localhost:5001

User-Agent: Meozilla/5.0 (Macintosh; Intel Mac 0S5 ¥ 10.10; ¥v:39.0)

Gecko/20100101 Firefox/39.0

ppppp

— Now the resource owner logs in...

Resource owner Authorization
authenticates to the Sarvor
authorization server

Client

CS@AU Henrik Baerbak Christensen

Figure 2.3 The resource owner logs in

eV Back to client

AARHUS UNIVERSITET
 AuthSrv redirect user back to client

Authorization code
HTTPF 3102 Found

Location: http://localhost:9000/cauth callback?code=8ViprirJ&ptate=Lwt50DDQKD
BBU7jtfLOCVEDLS cnmwHH1

« ... forcing the browser to request the client

or

GET fcal1hacdzcode:8vlprﬂrJqstate:LthDDDQKUBEUTjthQCVGDLanmeHl HTTP/1.1
Host: localhost:o000

« ... on the client’s /callback route
— (which must be defined for client to be OAuth compliant...)

 The authorization code Is a one-time token

CS@AU Henrik Baerbak Christensen 18

/v Call AuthSrv

AARHUS UNIVERSITET

 Client presents ‘auth code’ |
to AuthSrv using POST athorimton code ()
g E =

to the authorization
server’s token endpoint —

- =

POST /token -

Host: localhost:3001 Resource Authorization
. R R i Owner Server
Accept: application/json

Content-type: application/x-www-form-encoded @

Authorization: Basic b2FP1ldGgtY2xpZWSOLTE6b2F1dGgtY2xpZWS0LEN1Y3J1dCOx ﬁ
grant_type=authorization_codes& . .
grant_tvi - T
redirect_uri=http%3A%2F%2Flocalhostt 5000%2Fcallbackjcode=8V1prord m Cllent aUthentlcatesv
using its own credentials T
L] | eel
— a

Client Protected
Resource

* Note: The client 23S0 PresSents ez e o e com s o s sck o
Its own credentials M, so the
AuthSrv can ensure it is talking with a valid client
— l.e. the client app must in advance be registered in the AuthSrv!

CS@AU Henrik Baerbak Christensen 19

- (Side Note)

AARHUS UNIVERSITET
« Http basic access authentication (Wikipedia)

Basic access authentication

From Wikipedia, the free encyclopedia

In the context of an HT TP transaction, basic access authentication is a method for an HTTP user agent (e.g. a web
browser) to provide a user name and password when making a request. In basic HTTP authentication, a request
contains a header field in the form of Zuthorization: Basic <credentials> , Where credentials is the Basegd
encoding of ID and password joined by a single colon

public void shouvldDemonstrateBase&4Encoding() {

* Java has library e e

String idpwd = "mathilde_aarskort" + ":" + "333";
String encodedString = Baseé4.getEncoder().encodeToString(idpwd.getBytes(StandardCharsets.UTF_8));
ossertThot(encodedString, is(value: "bWFBaGlsZGVFYWFyc2tvenQéaMzMz"));

byte[] decodedByteArray = Basebt4.getDecoder().decode(encodedString);
String decodedString = new String(decodedByteArray, StandardCharsets.UTF_8);
assertThot(decodedString, is(idpwd})ﬂ

CS@AU Her ,

/v

To finally get Access Token
AARHUS UNIVERSITET

« The reply of the POST /token thoriaton serer [
ke to the chent
(.

. . . - Rasomra Authorization
This token is returned in the HTTP response as a [SON object. O Server
HTTF 200 OK @
Date: Fri 31 Jul 2015 21:19:03 GMT

Content-type: application/json m —r
— [7)=o
{ Cli Protected
"access token®: "987tghijkiustrfghijuytrghi-, Resource
- - Figure 2.7 The client receives an access token
*Loken_type”: “Bearer”

1
I

« This token embody This user is authorized and must be
presented to all future calls to the Protected Resource

« Thatis, ‘Client’ must cache this token

CS@AU Henrik Baerbak Christensen 21

/v

AARHUS UNIVERSITET
« That s, all future calls to protected resource are like:

GET /re
Host: 1
Accept: application/json

Access Token Use

source HTTP/1.1

ocalhost:59002

Connection: keep-aliv

AButhorization: Bearer 987tghikiuetrfghjuytrghj

 |.e. abearertokenin HTTP terms

— ‘the bearer of this token has access to...’

_ lee the Card employeeS Carry Wlth What is Bearer Authentication?
them inside Company bu i Id i ngS o Bearer authentication (also called token authentication) is an HTTP

authentication scheme that involves security tokens called bearer tokens. The
name “Bearer authentication” can be understood as “give access to the bearer
of this token.” The bearer token is a cryptic string, usually generated by the
server in response 1o a login request. The client must send this token in the
Authorization header when making requests to protected resources:
Authorization: Bearer

The Bearer authentication scheme was originally created as part of OAuth 2.0
in RFC 6750, but is sometimes also used on its own. Similarly to Basic

CS@AU Henrik Baerbak Christensen authentication, Bearer authentication should only be used over HTTPS (SSL).

eV The Access Token

AARHUS UNIVERSITET
 The access token is just a unique, opaque, bitstring

e But returned answer may include a lot of more info
— Scope, expiration time, refresh token

This token is returned in the HTTP response as a [SON object.

HTTP 200 OK
Date: Fri, 31 Jul 2015 21:19:03 GMT
Content-type: application/json
{
"access token®: "987tghijkiustrfghijuytrghi-,
*token_type”: “Bearer”

* Oryou can encode info in the token itself
— JSON Web Token (JWT)

const token = basebdurlEncoding(header) + '.' + basebdurlEncoding(payload) + ".' +
basetdurlEncoding (signature)

CS@AU Henrik Baerbak Christensen 23

/v Protected Resource

AARHUS UNIVERSITET

* S0, the PR receives the token in each request
— Must of course verify that it is a valid token!
— And cache it to speed things upon on next requests...
— May also include scopes, that is limit access to certain resources

The protected resource can then parse the token out of the header, determine whether
it’s still valid, look up information regarding who authorized it and what it was autho-
rized for, and return the response accordingly. A protected resource has a number of
options for doing this token lookup, which we’ll cover in greater depth in chapter 11.
The simplest option is for the resource server and the authorization server to share
a database that contains the token information. The authorization server writes new
tokens into the store when theyre generated, and the resource server reads tokens

from the store when they're presented.

CS@AU Henrik Baerbak Christensen 24

eV Phew...

AARHUS UNIVERSITET

« The process to get the access token is a two step
protocol

— 1. Get the one-time authorization code
 GET /authorize

— 2. Use client credentials + authorization code to get access token
« POST /token

* Once the access token is provided the AuthSvr is not
Involved

/v Separation of Concerns

AARHUS UNIVERSITET

 Note that the client does not care how the AuthSvr does
the authentication

— It is fully delegated and the client is not involved
* | can change my password and/or enable two-factor authentication

— Loose coupling

/v

AARHUS UNIVERSITET

Validating the Access Token

The Protected Resource’s view

/v

Issue
AARHUS UNIVERSITET

 The PR Is requested with an
access token

N Resource How do we let these two Authorization
GET /resource HTTE/1.1 components talk?
Host: localhost:9002
ABocept: application/json

son
Connection: keep-aliwve

- v o]
Authorization: Bearer 987tghjkiuétrfghjuytrghj [ee)

. m:n

lient Protected

* But how does the PR know that it is wu: e o
valid? And that it represents user A
and not user B?

— And what scopes have the user rights
to access?

CS@AU Henrik Baerbak Christensen 28

eV Solutions

AARHUS UNIVERSITET
* The simplest and often not possible solution...

The simplest option is for the resource server and the authorization server to share
a database that contains the token information. The authorization server writes new

* Obviously not relevant if we are using Google as
AuthSvr!

* The other solution
— The inspection protocol

CS@AU Henrik Baerbak Christensen 29

/v Introspection protocol

AARHUS UNIVERSITET

* The AuthSvr provides the abllity to validate the token
— Is this token valid? What is the resource owner involved?

POST /introspect HTTP/1.1
Host: localhost:9001
cocept: application/json

Content-type: application/x-www-form-encoded
Authorization: Basic

cHIvdAGVjdGVELET1cZ2531cmN1 LTE6cHIvAGVJdGVKLE I 1 c291emNILEN1Y3T1dC0x

token=987tghijkiubtrfghjuytrghj

e Again, this client sust have been registered and present
Its credentials 7, and of course also present the token,
that must be validated...

CS@AU Henrik Baerbak Christensen 30

- Introspection Reply

AARHUS UNIVERSITET
* Reply is a description of the token

Claim Name

— ACtu al |y a J avaWe bTO ke n , JWT Table 11.1 Standard JSON web token claims

Claim Description

=33

HTTP 200 OK '
Content-type: application/json

sub
{

"active": true, sud
"scope®: "foo bar baz",
"client_id": "cauth-client-17,
"username": "alice", —
"igg": "http://localhost:9001/",
"sub": "alice", ot
"aud®": "http://localhost:/9002/",
"iat": 1440538R596,
"exp": 1440538856, o

i

— Oryou get 401 UNAUTHORIZED -

The issuer of the token. This is an indicator of whe created this token, and in many
OAuth deployments this is the URL of the authorization server. This claim is a single
string.

The subject of the token. This is an indicator of who the token is about, and in many
OAuth deployments this is a unigue identifier for the resource owner. In most cases,
the subject needs to be unique only within the scope of the issuer. This claim is a
single string.

The audience of the token. This is an indicator of who is supposed to accept the
token, and in many OAuth deployments this includes the URI of the protected
resource or protected resources that the token can be sent to. This claim can be
either an array of strings or, if there's only ene value, a single string with no array
wrapping it.

The expiration timestamp of the token. This is an indicator of when the token will
expire, for deployments where the token will expire on its own. This claim is an
integer of the number of seconds since the UNIX Epoch, midnight on January 1,
1970, in the Greenwich Mean Time (GMT) time zone.

The not-before timestamp of the token. This is an indicator of when the token
will begin ta be valid, for deployments where the token could be issued before it
becomes valid. This claim is an integer of the number of seconds since the UNIX
Epoch, midnight on January 1, 1870, in the GMT time zone.

The issued-at timestamp of the token. This is an indicator of when the token was
created, and is commonly the system timestamp of the issuer at the time of token
creation. This claim is an integer of the number of seconds since the UNIX Epoch,
midnight on January 1, 1970, in the GMT time zone.

The unique identifier of the token. This is a value unique to each token created by the
issuer, and it's often a cryptographically random value in order to prevent collisions.
This value is also useful for preventing token guessing and replay attacks by adding a
compenent of randomized entropy to the structured token that would not be available
to an attacker.

CS@AU Henrik Baerbak Christensen

31

/v Downstream Usage

AARHUS UNIVERSITET

« The inspection protocol is essential in a microservice
context...

— A ‘front’ service may pass the access token on to a downstream
service

* Which needs to verify the request is secure to perform

— It can therefore always contact the AuthSvr to verify the received
token (and cache it for further requests).

Cmd Daemon n Cave Service

Magnus is
Authorized Authorized???

CS@AU Henrik Baerbak Christensen 32

/v

AARHUS UNIVERSITET

SkyCave Adaption

/v SkyCave Simplifications

AARHUS UNIVERSITET

« SkyCave Is not a web based system, but Broker based
— Redirects and stuff do not apply

« SkyCave is (already) a legacy system
— The ‘daemon’ is the ‘AP| Gateway’ = single point of entry
— That is, the client does send credentials to the daemon

« Design decision:

— Keep the present centralized design
» Client sends credentials to daemon
« Daemon asks subscription service (AuthSvr) to authorize

— Refactoring to a more correct design pending © ...

/v SkyCave Simplifications

AARHUS UNIVERSITET
« Simplifications
— GET /authorize Forward to AuthServer (auth token)
— POST /token Create and return Access Token

+ .. Is replaced by a single|‘POST /authorize’ to the
AuthSrv that provides the access token right away
— Simplifies design (and your work ©)

« Java Connector Equivalent:

— subscriptionService.authorize(loginName, pwd)

« Which returns a subscriptionRecord with
— getStatusCode() = 200 or 401
— getAccessToken = “OAuth access token”

Teskts passed: 1
Jusr/lib/jvm/java-1.11.8-openjdk-amdé4/bin/java ...
{"playerName": "Mathilde", "playerID":"user-803","groupName":"grp@2", "region":"AALBORG", "accessToken":"token#8", "httpStatusCode": 208}

4

Authorize a loginlame

AARHUS -

POST /fapi/v3/authorize

Accept: application/json
Authorization: Basic skycave_daemon:{daemon_pwd}

{
"loginName”: {login name}
"password": {password}

¥

Response:
Status: 481 UNAUTHORIZED

{
"httpStatusCode”: 481,
"message": (error description)

¥

Status: 580 INTERNAL SERVER ERROR

{
"httpStatusCode”: 568,
"message”: (error description)

Status: 208 0K

{
"accessToken™: "4ccb8lle-df79-4385-alac-f3f2dfed47234",
"httpStatusCode”: 2080,
"message”: "loginMName (name) was authorized”,
"subscription”: {
"dateCreated”: "2015-06-14 13:81 PM CEST",
"grouplame”: "group-18",
"groupToken™: "Manganese946_Serbiadl9”,
"loginName"”: "name"”,
"playerID”: "a3687675-99bd-4ab7-8aa9-61592676227c",
"playerName”: "Elialgrg"”,
"region”: "AALBORG"
¥
¥

CS@AU

Protocol

Comment:

This POST request merges the 0Auth 2's protocol
of GET fauthorize and POST /token in a single
request; however the response carries a full
SubscriptionRecord PODO as J1S0M.

The OAuth relevant "access token' is the wvalue
of key 'accessToken® in returned JS0MN.

Returned status codes are the standard HTTP

481 / UNAUTHORIZED and 288 / OK status codes,

and is also replicated in the 150N payload.

588 may be returned in case of server malfunction,
typically internal persistent storage failure.

The basic authentication is standard HTTP

Basebd encoded of the literal "skycave daemon" and
he password for the daemon, separated by colon.

Skycaue_daemun:FStquSEutﬂ

Henrik Baerbak Christensen 36

/v

AARHUS UNIVERSITET
* Find a few learning tests in:

Have a look at

¥ g server

’ build
b out
V src
» 'z main
v [java
v [cloud.cave
b common
? config
> doubles
b server
SErvice

€ TestAuthorization

AF

¢ Testinspector
€ TestQuoteService

CS@AU Henrik Baerbak Christensen 37

VeV Access Token

AARHUS UNIVERSITET

 New access tokens are issued upon each /authorize call

— Access token must be presented to each call to a protected
resource

* ltis actually a ‘session id’, identifying the current session a given
player has within the cave...

* Thus, it is presented to each ‘cmd — daemon’ interaction
— Daemon is the protected resource, right...

* Access tokens do not expire in our subscription service
— At least for now, maybe in the future...

* New login => New Access token

— Thereby it mimics a session id; the old access token is
invalidated...

VeV Access Token

AARHUS UNIVERSITET

 Broker Architecture issue

— Broker sends requests to an ‘objectld’ and has no token field

« But what is the objectld?
— playerid identifies Magnus
— accessToken identifies Magnus’ authorization

* |s it the one? Is it the other?

— Design decision
» objectld is a mangling of ‘playerld##accessToken’
— Allows identifying ‘dual login’ handling
» That is, two+ clients competing to be ‘Magnus’
« Daemon needs both to determine this situation...
— Playerld identifies Magnus, token the current session...

Y Example

AARHUS UNIVERSITET

« Mathilde moves north (with the stub subscription service,
which issues tokens like “token#0")

« Note: Not an exercise for you. It is taken care of in the
provided code base
— Just to justify the design decision...

CS@AU Henrik Baerbak Christensen 40

Y /introspect

AARHUS UNIVERSITET

« Later in the course, you will be strangling the daemon...
— Migrate from a monolith to a set of microservices

 Example

— Daemon does not handle messages in the room
|t asks a MessageService to do that on behalf of it

A down stream service that needs to validate token

o But we will return to this later...

4

Introspect an AccessToken

AP

POST /fapi/v3/introspect

Accept: application/json Comment:
Authentication: Basic skycave service:{service pwd} This fintrospect mimics Oduth 2.8 inspection of a token,
used by downstream services to wverify that a given bearer
{ token indeed represents a walid authorization.
"token": {access token}
1 Returned status codes are the standard HTTP
481 / UNMAUTHORIZED and 208 / OK status codes,
Response: and is also replicated in the JSON payload.
Status: 461 UNAUTHORIZED 500 may be returned in case of server malfunction,
typically internal persistent storage failure.
{ YP ¥ p g
"httpStatusCode": 461
"mesga :"?S"EDEId not,intros ect token {access token}" The basic authentication 1is standard HTTP
ge P Basebd encoded of the literal "skycave_serwvice" and
¥

a password, separated by colon. The password is shared

by all downstream services to simplify design.
Status: 280 OK

1
"accessToken": "6f9334b3-ced/-4bed-bdf3-002e49b15a42",
"httpStatusCode™: 288,
"subscription": {
"dateCreated”: "2815-86-14 11:81 AM GMT™,
"grouplame"”: "group-18",
"groupToken”: "Manganese946 Serbiadl9”,
"loginName": "rwar31lt",
"playerID”: "a26B7675-99bd-4ab7-8aa9-6f592676227c",
"playerilame”: "Elialgrg"”, e e —
“region”: "AALBORG" 56utxf8tqv
b
h

CS@AU Henrik Baerbak Christensen 42

Y Summary

AARHUS UNIVERSITET
« OAuth 2.0:

— A protocol to authorize a client to access a protected resource
* Rooted in the HTTP protocol

— Without the client knowing the credentials; loose coupling
— Parties: Resource owner, Client, AuthSvr, Protected Resource

— Central artifact is the access token

» Represents the resource owner when client access protected
resource

« The protocol outlines how the client receives the token

— Any client that receives an access token can verify it using the
Introspection protocol

Y Summary

AARHUS UNIVERSITET

« In MSDQO’s SkyCave systems some simplifications have
been made
— Credentials are sent to the daemon
— POST /authorize
» Merges the two requests to get the access token

— Client — daemon interactions are via the Broker pattern
» objectld is a merge of (playerld, accessToken)

— Downstream services can verify a token using POST /introspect

