
Microservices and DevOps

DevOps and Container Technology
Security 101 - Authorization

Henrik Bærbak Christensen

Authorization

• Concerned with ability to protect data and information

from unauthorized access while still providing access to

people/systems that are authorized

• Authenticate actor

– Ok, you are Magnus

• Authorize actor

– … and you have access to

SkyCave

CS@AU Henrik Bærbak Christensen 2

Our Backyard

• You register credentials

in the course subscription

service…

– ‘Authenticate’

• The daemon asks it during

cave login

– ‘Authorize’

CS@AU Henrik Bærbak Christensen 3

Architecturally

• Then our daemon service must talk to the subscription

service to authorize ‘Mathilde’

• Simple, right?

– Let Cmd send (loginName, password) to Daemon…

– Deamon sends the (loginName, password) to AuthSrv and get a

200 OK or a 401 UNAUTHORIZED back?

CS@AU Henrik Bærbak Christensen 4

Daemon Auth ServerCmd

MSDO until 2021

• This is actually exactly the way the SkyCave system

operated up until 2021

• The daemon would make a

GET request on

the subscription service…

CS@AU Henrik Bærbak Christensen 5

The Issue

• The problem is: Now Daemon has your credentials. It can

impersonate you in other contexts.

• In a growing web of services, it means your credentials

are spread over an ever increasing set of services…

– This does not really appear secure, does it?

• And you have to keep track of credentials for numerous

services

– Each having their own database of credentials

•

CS@AU Henrik Bærbak Christensen 6

The Solution

• Delegate the authorization to a AuthServer

– I.e. you provide credentials to the AuthSrv, not the resource you

want to access

• The AuthSvr issues an AccessToken that is returned to

the client (if you are authorized, of course)

– Basically a unique ‘thing’ that states ‘you may use the resource’

• From now on, all communication client-to-resource

includes that token

• The resource can always verify that the token is valid by

requesting the AuthSvr

• And – it expires…
CS@AU Henrik Bærbak Christensen 7

Example

CS@AU Henrik Bærbak Christensen 8

(Privacy)

• As a sidenote, privacy is quite another quality attributes

– If you use Google as AuthSrv, then Google knows exactly which

services you access and when…

CS@AU Henrik Bærbak Christensen 9

Authentication

The OAuth 2 Dance

It is a protocol !

And it is a HTTP protocol…

Terminology

• The terms takes a bit of getting-used-to…

• Resource Owner

– That is me

• Protected Resource

– That is my bank account

• Client

– That is the bank’s web site

• Authorization Server

– That is NemID or …

CS@AU Henrik Bærbak Christensen 11

Exercise

• I need access to my BitBucket account

• Who is who here?

CS@AU Henrik Bærbak Christensen 12

Helicopter Perspective

• Overall…

CS@AU Henrik Bærbak Christensen 13

• And the details…

• Note the redirects…

– OAuth is a protocol relying

on the web and HTTP

CS@AU Henrik Bærbak Christensen 14

The Details

Authorization Grant

• The OAuth Dance

– Press ‘login’

make a redirect

as answer

– Forcing my browser

to …

CS@AU Henrik Bærbak Christensen 16

In the code:
9000 is the client

9001 is the AuthSvr
9002 is Protected Resource

Redirect

• … load the login page

– Follow the requested redirect to the AuthServer

– Now the resource owner logs in…

CS@AU Henrik Bærbak Christensen 17

Back to client

• AuthSrv redirect user back to client

• … forcing the browser to request the client

• … on the client’s /callback route

– (which must be defined for client to be OAuth compliant…)

• The authorization code is a one-time token

CS@AU Henrik Bærbak Christensen 18

Authorization code

Call AuthSrv

• Client presents ‘auth code’

to AuthSrv using POST

• Note: The client also presents

its own credentials , so the

AuthSrv can ensure it is talking with a valid client

– I.e. the client app must in advance be registered in the AuthSrv!

CS@AU Henrik Bærbak Christensen 19

(Side Note)

• Http basic access authentication (Wikipedia)

• Java has library

support for Base64

CS@AU Henrik Bærbak Christensen 20

To finally get Access Token

• The reply of the POST /token

• This token embody This user is authorized and must be

presented to all future calls to the Protected Resource

• That is, ‘Client’ must cache this token

CS@AU Henrik Bærbak Christensen 21

Access Token Use

• That is, all future calls to protected resource are like:

• I.e. a bearer token in HTTP terms

– ‘the bearer of this token has access to…’

– Like the card employees carry with

them inside company buildings…

CS@AU Henrik Bærbak Christensen 22

The Access Token

• The access token is just a unique, opaque, bitstring

• But returned answer may include a lot of more info

– Scope, expiration time, refresh token

• Or you can encode info in the token itself

– JSON Web Token (JWT)

CS@AU Henrik Bærbak Christensen 23

Protected Resource

• So, the PR receives the token in each request

– Must of course verify that it is a valid token!

– And cache it to speed things upon on next requests…

– May also include scopes, that is limit access to certain resources

CS@AU Henrik Bærbak Christensen 24

Phew…

• The process to get the access token is a two step

protocol

– 1. Get the one-time authorization code

• GET /authorize

– 2. Use client credentials + authorization code to get access token

• POST /token

• Once the access token is provided the AuthSvr is not

involved

CS@AU Henrik Bærbak Christensen 25

Separation of Concerns

• Note that the client does not care how the AuthSvr does

the authentication

– It is fully delegated and the client is not involved

• I can change my password and/or enable two-factor authentication

– Loose coupling

CS@AU Henrik Bærbak Christensen 26

Validating the Access Token

The Protected Resource’s view

Issue

• The PR is requested with an

access token

• But how does the PR know that it is

valid? And that it represents user A

and not user B?

– And what scopes have the user rights

to access?

CS@AU Henrik Bærbak Christensen 28

Solutions

• The simplest and often not possible solution…

• Obviously not relevant if we are using Google as

AuthSvr!

• The other solution

– The inspection protocol

CS@AU Henrik Bærbak Christensen 29

Introspection protocol

• The AuthSvr provides the ability to validate the token

– Is this token valid? What is the resource owner involved?

• Again, this client must have been registered and present

its credentials , and of course also present the token,

that must be validated…

CS@AU Henrik Bærbak Christensen 30

Introspection Reply

• Reply is a description of the token

– Actually a JavaWebToken, JWT

– Or you get 401 UNAUTHORIZED

CS@AU Henrik Bærbak Christensen 31

Downstream Usage

• The inspection protocol is essential in a microservice

context…

– A ‘front’ service may pass the access token on to a downstream

service

• Which needs to verify the request is secure to perform

– It can therefore always contact the AuthSvr to verify the received

token (and cache it for further requests).

CS@AU Henrik Bærbak Christensen 32

Daemon Cave ServiceCmd

Magnus is
Authorized

Magnus is
Authorized???

SkyCave Adaption

SkyCave Simplifications

• SkyCave is not a web based system, but Broker based

– Redirects and stuff do not apply

• SkyCave is (already) a legacy system

– The ‘daemon’ is the ‘API Gateway’ = single point of entry

– That is, the client does send credentials to the daemon

• Design decision:

– Keep the present centralized design

• Client sends credentials to daemon

• Daemon asks subscription service (AuthSvr) to authorize

– Refactoring to a more correct design pending ☺ …

CS@AU Henrik Bærbak Christensen 34

SkyCave Simplifications

• Simplifications

– GET /authorize Forward to AuthServer (auth token)

– POST /token Create and return Access Token

• .. Is replaced by a single ‘POST /authorize’ to the

AuthSrv that provides the access token right away

– Simplifies design (and your work ☺)

• Java Connector Equivalent:

– subscriptionService.authorize(loginName, pwd)

• Which returns a subscriptionRecord with

– getStatusCode() = 200 or 401

– getAccessToken = “OAuth access token”

CS@AU Henrik Bærbak Christensen 35

Protocol

CS@AU Henrik Bærbak Christensen 36

Have a look at

• Find a few learning tests in:

CS@AU Henrik Bærbak Christensen 37

Access Token

• New access tokens are issued upon each /authorize call

– Access token must be presented to each call to a protected

resource

• It is actually a ‘session id’, identifying the current session a given

player has within the cave…

• Thus, it is presented to each ‘cmd – daemon’ interaction

– Daemon is the protected resource, right…

• Access tokens do not expire in our subscription service

– At least for now, maybe in the future…

• New login => New Access token

– Thereby it mimics a session id; the old access token is

invalidated…

CS@AU Henrik Bærbak Christensen 38

Access Token

• Broker Architecture issue

– Broker sends requests to an ‘objectId’ and has no token field

• But what is the objectId?

– playerId identifies Magnus

– accessToken identifies Magnus’ authorization

• Is it the one? Is it the other?

– Design decision

• objectId is a mangling of ‘playerId##accessToken’

– Allows identifying ‘dual login’ handling

» That is, two+ clients competing to be ‘Magnus’

• Daemon needs both to determine this situation…

– PlayerId identifies Magnus, token the current session…

CS@AU Henrik Bærbak Christensen 39

Example

• Mathilde moves north (with the stub subscription service,

which issues tokens like “token#0”)

• Note: Not an exercise for you. It is taken care of in the

provided code base

– Just to justify the design decision…

CS@AU Henrik Bærbak Christensen 40

/introspect

• Later in the course, you will be strangling the daemon…

– Migrate from a monolith to a set of microservices

• Example

– Daemon does not handle messages in the room

• It asks a MessageService to do that on behalf of it

• A down stream service that needs to validate token

• But we will return to this later…

CS@AU Henrik Bærbak Christensen 41

API

CS@AU Henrik Bærbak Christensen 42

A single token for all services

56utxf8tqv

Summary

• OAuth 2.0:

– A protocol to authorize a client to access a protected resource

• Rooted in the HTTP protocol

– Without the client knowing the credentials; loose coupling

– Parties: Resource owner, Client, AuthSvr, Protected Resource

– Central artifact is the access token

• Represents the resource owner when client access protected

resource

• The protocol outlines how the client receives the token

– Any client that receives an access token can verify it using the

introspection protocol

CS@AU Henrik Bærbak Christensen 43

Summary

• In MSDO’s SkyCave systems some simplifications have

been made

– Credentials are sent to the daemon

– POST /authorize

• Merges the two requests to get the access token

– Client – daemon interactions are via the Broker pattern

• objectId is a merge of (playerId, accessToken)

– Downstream services can verify a token using POST /introspect

CS@AU Henrik Bærbak Christensen 44

